

Victorian Electoral Commission

BALLOT DRAW REVIEW

BMM Australia Pty Ltd

18 July 2022

EXECUTIVE SUMMARY

The Victorian Electoral Commission (VEC) has requested BMM to audit the randomness of the new Ballot Draw
service. This service has been updated since the previous version was evaluated by BMM in August 2020 in report
VEC.1007.01, to make use of a more suitable random number generator and its available functions provided by
the .NET software framework. The new random number generator used by the service produces unpredictable
sequences of random values. The draw algorithm itself produces random draws from a uniform distribution. As
a result of the statistical testing and source code review, BMM believes that the new Ballot Draw service provides
uniformly distributed random draws fit for the intended purpose of randomly ordering candidates.

TABLE OF CONTENTS

1 PURPOSE OF EVALUATION ... 1

2 DESCRIPTION OF RNG ... 1

2.1 Seeding .. 1

2.2 Scaling ... 1

2.3 Security .. 1

3 STATISTICAL TESTING ... 1

3.1 Test Results ... 1

3.1.1 Empirical Tests ... 2

3.1.2 Diehard Tests ... 2

3.1.3 NIST Tests .. 2

4 RANDOM DRAW ALGORITHM .. 3

5 CONCLUSION .. 3

APPENDIX A SOURCE CODE .. 4

APPENDIX B STATISTICAL TESTS ... 5

B1 Empirical Tests.. 5

B2 Diehard Tests .. 5

B3 NIST Tests ... 6

Ballot Draw Review VEC.1009.01 Page 1 of 6

1 PURPOSE OF EVALUATION

The Victorian Electoral Commission (VEC) has requested BMM to audit the randomness of the new Ballot Draw
service. This service has been updated since the previous version was evaluated by BMM in August 2020 in report
VEC.1007.01, to make use of a more suitable random number generator and its available functions provided by
the .NET software framework. The source code used for the review was provided to BMM on 27 June 2022 and
is included in Appendix A.

2 DESCRIPTION OF RNG

The Ballot Draw service runs in a Microsoft DotNet ASPNet Core 3.1 package running in a Docker container on a
Linux server. The service draws random numbers using functions provided by the RandomNumberGenerator
class in the System.Security.Cryptography namespace, which in turn draws from the system’s cryptographically
secure random number generator.

2.1 Seeding

The underlying system RNG is seeded by the system with entropy drawn from numerous system sources. This
makes for an entirely unpredictable state after seeding, with no user managed seeding involved.

2.2 Scaling

The Ballot Draw service uses functions provided by the RandomNumberGenerator class to produce random
numbers in usable ranges from a uniform distribution without introducing bias.

2.3 Security

The underlying system RNG uses a cryptographically secure algorithm, combined with periodic injection of
entropy collected from system sources, to produce a sequence of random numbers that cannot be predicted.

3 STATISTICAL TESTING

Statistical tests were performed on the output from the RNG. Raw output from the RNG was subjected to a range
of tests in the Empirical, Diehard and NIST test suites. Appendix B describes the tests run in each test suite.

3.1 Test Results

Each test tests the hypothesis that the RNG is a random source of numbers. A “p-value” is produced for each test
run, which is the probability that a truly random process would produce the same or a more extreme result. P-
values are expected to be uniformly distributed between 0 and 1. Each test is performed at least 100 times, and
the p-values for each test are evaluated using an Anderson-Darling test. This produces a single p-value, which is
the probability that the individual p-values have been produced from a uniform distribution.

Finally, the p-values from each test in the same test suite are combined using the Holm-Bonferroni method to
provide an overall p-value. This process adjusts each p-value to ensure that the overall probability of accepting
the RNG as random matches the confidence interval used. The overall p-value, equal to the minimum of the
adjusted p-values, is compared to a specific alpha value to determine if the RNG is accepted or rejected as being
random for a specific confidence interval. For a 95% confidence interval, the alpha value used is 0.05.

The following tables summarise the test results. See Appendix B for a description of the statistical tests used.

Ballot Draw Review VEC.1009.01 Page 2 of 6

3.1.1 Empirical Tests

Test P-values 99% Confidence

Frequency Test 1.000000 PASS
Serial Correlation Test 0.978384 PASS

Runs Test 0.978384 PASS
Gap Test 0.658824 PASS

Coupon Collector Test 0.978384 PASS
Subsequences Test 1.000000 PASS

Poker Test 0.978384 PASS

Overall 0.658824 PASS

Conclusion: The RNG is ACCEPTED as random at the 99% confidence interval.

3.1.2 Diehard Tests

Test P-values 99% Confidence

Binary Rank 32x32 Test 1.000000 PASS
Binary Rank 6x8 Test 1.000000 PASS

Birthday Spacings Test 1.000000 PASS
Bitstream Test 1.000000 PASS

Count The 1's Stream Test 1.000000 PASS
Count The 1's Specific Test 1.000000 PASS

Runs Test 1.000000 PASS
Squeeze Test 1.000000 PASS

Overall 1.000000 PASS

Conclusion: The RNG is ACCEPTED as random at the 99% confidence interval.

3.1.3 NIST Tests

Test P-values 99% Confidence

Approximate Entropy Test 1.000000 PASS
Block Frequency Test 1.000000 PASS
Cumulative Sums Test 1.000000 PASS

Discrete Fourier Transform Test 1.000000 PASS
Frequency Test 1.000000 PASS

Linear Complexity Test 1.000000 PASS
Longest Run of Ones Test 1.000000 PASS

Non-Overlapping Template Matchings Test 1.000000 PASS
Overlapping Template Matchings Test 1.000000 PASS

Random Excursions Test 1.000000 PASS
Random Excursions Variant Test 1.000000 PASS

Rank Test 1.000000 PASS
Runs Test 1.000000 PASS
Serial Test 1.000000 PASS

Universal Test 1.000000 PASS

Overall 1.000000 PASS

Conclusion: The RNG is ACCEPTED as random at the 99% confidence interval.

Ballot Draw Review VEC.1009.01 Page 3 of 6

4 RANDOM DRAW ALGORITHM

The draw algorithm works by creating a list of indexes that correspond to each candidate. A new list is created
by repeatedly selecting and removing an index at random from the first list and adding it to the new list, until
the first list is empty, and the new list contains some permutation of all the indexes. This process correctly
shuffles the positions uniformly without introducing any bias.

5 CONCLUSION

The new random number generator used by the Ballot Draw service produces unpredictable sequences of
random values. The draw algorithm itself produces random draws from a uniform distribution. As a result of the
statistical testing and source code review, BMM believes that the new Ballot Draw service provides uniformly
distributed random draws fit for the intended purpose of randomly ordering candidates.

Christopher van Prooije, Senior Systems Consultant, Mathematics

Ballot Draw Review VEC.1009.01 Page 4 of 6

APPENDIX A SOURCE CODE

The following is the source code in BallotDrawHelper.cs used by the Ballot Draw application. It was provided to
BMM on 27 June 2022.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Security.Cryptography;

namespace BallotDrawRandNumGen.WebApi
{
 public class BallotDrawHelper
 {
 private static readonly object syncLock = new object();

 public virtual int[] GenerateRandomPositions(int count)
 {
 if (count <= 0)
 throw new ArgumentOutOfRangeException("count");

 lock (syncLock)
 {
 //get the set of numbers from 1 to {count}
 var positions = Enumerable.Range(1, count).ToList();
 // create a list to hold the new numbers
 var perm = new List<int>();
 for (int i = 0; i < count; i++)
 {
 // find the random index for list
 int n = RandomNumberGenerator.GetInt32(positions.Count);
 // push the value corresponds to the random index to the result list
 perm.Add(positions[n]);
 // remove the selected number from the lot
 positions.RemoveAt(n);
 }
 return perm.ToArray();
 }
 }
 }
}

Ballot Draw Review VEC.1009.01 Page 5 of 6

APPENDIX B STATISTICAL TESTS

The following tests were used to test the statistical properties of the RNG.

B1 EMPIRICAL TESTS

The Empirical Tests are based on the tests described by Donald Knuth in The Art of Computer Programming
Volume 2: Seminumerical Algorithms (1968, revised in 1997). They test sequences of numbers scaled to specific
ranges.

Frequency Test Counts of each number occurring across the sample set.

Serial Correlation Test Counts of non-overlapping groups of numbers occurring together. Group sizes of two,
three, and four are tested separately.

Runs Test Counts of ascending and descending sequences of numbers. Note that this is a
different test to the Runs Test in the Diehard and NIST Tests.

Gap Test Counts of the size of gaps between successive occurrences of a given number. Each
number in the range is tested separately.

Coupon Collector Test Counts of sequence lengths required to complete a full set of each number in the
range.

Subsequences Test Similar to the Serial Correlation Test for pairs of numbers, except looking at numbers
separated by a specific gap. Step sizes of 5, 10, 15, and 20 are tested separately.

Poker Test The sequence is split into groups of five. The number of unique values in each group is
counted.

B2 DIEHARD TESTS

The Diehard Tests are based on the test suite published by George Marsaglia in 1995. They test sequences of
raw binary output from the RNG.

Binary Rank 32x32 Test Matrices are created using 32 32-bit words. The ranks of the resulting matrices are
counted.

Binary Rank 6x8 Test Same as the Binary Rank 32x32 Test, except each matrix is formed using 6 values,
each taking 8 bits from successive 32-bit words with a specific offset. All possible
offsets are tested separately.

Birthday Spacings Test 32-bit words are taken as values, sorted, and the spacings between them
calculated. The number of spacings of the same size are counted.

Bitstream Test Blocks of 2^18 values are treated as a stream of overlapping 20-bit values. The
number of possible 20-bit values that are not found in each block is counted.

Count The 1's Stream Test 8-bit values are taken and assigned a “letter” based on the number of one’s
appearing in the binary representation of each value. Overlapping groups of 5
“letters” are counted.

Count The 1's Specific Test Similar to the Count The 1’s Stream Test, except 8-bit values are taken from
successive 32-bit words with a specific offset. All possible offsets are tested
separately.

Runs Test Counts sequences of increasing and decreasing 32-bit words. Note that this is a
different test to the Runs Test in the Empirical and NIST Tests.

Squeeze Test A value of 2^31 is repeatedly multiplied by 32-bit words, dividing by 2^32 and
taking the ceiling of the result each time. The number of successive words that are
required to reduce the value down to 1 is counted. The value is reset to 2^31 and
the process is repeated.

Ballot Draw Review VEC.1009.01 Page 6 of 6

B3 NIST TESTS

The NIST Tests are based on the suite of tests released by the National Institute of Standards and Technology in
Special Publication 800-22, Revision 1a (revised April 2010). They test sequences of raw binary output from the
RNG.

Approximate Entropy Test Similar to the Serial Test, count each possible m-bit value, except it
does so for two adjacent m bit lengths and compares the two.

Block Frequency Test Similar to the Frequency Test, except the data is split into equally
sized blocks. The number of ones and zeroes in each block is
counted.

Cumulative Sums Test Random walks are created by converting the data to +1 / -1 for 1 /
0 respectively and summing consecutive values.

Discrete Fourier Transform Test The data is transformed using a Discrete Fourier Transform. The
number of peaks within the 95% threshold are counted.

Frequency Test The number of ones and zeroes in the binary output is counted.

Linear Complexity Test The length of the linear complexity of the random sequence is
determined.

Longest Run of Ones Test The data is split into equally sized blocks. The longest run of ones
in each block is determined and counted.

Non-Overlapping Template Matchings Test The data is split into equally sized blocks. Each block is searched for
a specific pattern of bits and counted. A separate test is run for
various bit patterns. Each bit pattern searched does not overlap
with itself. That is, when the pattern is matched, the end of the
pattern cannot be the start of another match.

Overlapping Template Matchings Test Similar to the Non-Overlapping Template Matchings Test, except
only one pattern is searched, which may overlap with itself.

Random Excursions Test As with the Cumulative Sums Test, random walks are created by
converting the data to +1 / -1 for 1 / 0 respectively and summing
consecutive values. The number of times a given state is visited
between returns to zero are counted. Separate tests are run for
various states from -4 to +4, not including 0.

Random Excursions Variant Test Similar to the Random Excursions Test, except the number of times
the given state is visited is counted for the entire sequence.
Separate tests are run for various states from -9 to +9, not
including 0.

Rank Test Matrices are created using 32 32-bit words. The ranks of the
resulting matrices are counted. Note that this is fundamentally the
same test as the Binary Rank 32x32 Test in the Diehard Tests,
although the implementation may differ.

Runs Test Runs of consecutive bits of the same value of various lengths are
counted.

Serial Test Counts of each possible m-bit values. Separate tests are run for
various m bit lengths.

Universal Test Distances between repeated patterns of bits are counted.

--- END OF REPORT ---

